h e c as e of - o | p 'A .
' .‘ 8 -] % r B
._....‘ i -4 - 3 ' | ” .(:
a . “ o
i S \ . f) . P
\.: ,. - A i ’
W N A . o
\ R oY« i -‘)
N /S Ven LRI : {
. o ‘ fwine :
B P' » or N I | .
.. . - '
A
’

Debugging a multithreaded mystery where system lies to |tse|ﬁ

Pushpalanka Jayawardhana

DL EL L R —

'\\ ? .
l T

oM LT gl

Q0 B e G @ e O
1 T o oottt 8o vEnENDy

Y
A

TGN mevt 2 o
[£

!
Fad |
' PR T
{ao mm«‘mm, .
U el TR T TR DR

-
";

.'«‘5
"
A

.
row
n
‘ AS
- :

"b WAy g anasraw | Lo suben.
MR MAOTOIRAos reaGeaat | |
. ~ “ ’ P o : . ' : ’* -
&) -~ m.m ~ ' .
' & . ~ONP WL TENED ORI fiecen D — P
ol e anren i Sy
e A LR T . -

MR SO gastmsla to o\
1 Alherm e 1 N

oo (W“*'.MFM
O OVTAEY "Caeme oty i 1T

\\\ NN A e R .
The MISSIOI‘I Achleve Faster Starth

/
& We rolled out an optimization to Zalando’s

open-source ingress controller, Skipper E Skipper (Ingress Controller)

Parallel Initialization

P ik AN

=< * The Goal : Modify the system to start all “T‘ —4a | ~

b OPA | |
Instance

OPA |}
required Open Policy Agent(OPA) instances in

Instance

Instance Instance

-. L . - 2
’ - - g—

'*

parallel, allowing Skipper to be operational wm T ' -—

f
5 Instance Instance |

1 ora
' Instance

more quickly during large scale deployments

Instance

> .,. n.l ’un- — } o

=2 * This change, intended to improve performance, 4 '*
7 exposed a hidden time-dependent bug in OPA’s Instance Instance Instance \

plugin manager | \
’ % | 9
> y, /7 . - o " . s ‘ y ¢ . , N\ ‘
For furthef details on settp: -) -y /{ L e :
https://engineering.zaIando.com/posts/2021/12/open—polic%gent—in—skipper—ingress.html \

|

N

OPA
Instance

https://engineering.zalando.com/posts/2024/12/open-policy-agent-in-skipper-ingress.html

/

The Phantom Erro/r/: A Perfect LockediRoom‘ Mystery
. | . ~ ¥ ’ o . \ e N ¥ / ay - |

= " - /
% N\ ’/ ,
" OERRORS ||
= (| ¥ <5% 4 1 ‘ =
. 1 Route 1 Pod Zero
Consistent, Only one failing Only one pod No error logs despite
but small error rate route out of many comprehensive logging

f::"—}\-,é (REY Clue: . w

e . N — o X
.

F)(Unhealthy | 2024-12-26 18:50:10 |

= ' Healthy | 2024-12-26 18:50:09

Log line that failing OPA instance became healthy, followed by another line where it became |
tu@ealthy In a fraction of a second l :

J ‘\\ A V -‘ - 4 2 . ’ { s 3 ' \ : ‘ ‘\
¢ N \ — Ty PP N S ’

Ruling out the Usual Suspects

Our first step was to eliminate sources of errors through a process of deduction

»
| .
\ \
N

/ /
Theory 1: A Buggy OPA O Theory 2: A Corrupted
Policy? :ﬁ vlv

Bundle Download?
Verdict: Ruled Out. The ex‘a'f ,_ E Verdict: Ruled. Out. Ou logﬁg
same,pollc worked p%r?é‘cflyﬁn) conflrmea"ﬁat"fal Bundle s) .
every“ U v _i_ " P\ weredonloade c?la'nd'ﬁ'arsed

N succé\s‘éfﬁl‘ry*\')\llth NO"rrors
/ rep(')‘rted/ J/

Conclusion: With the simple explanations exhausted, we knew we were dealing
P with a deeper, more elusive issue.

Forcing the Bug Out of Hiding

* Despite many different approaches, issue didn'’t get reproduced with locally with a similar setup as of
stakeholders. IR \ S | 4 o

e The breakthrough: I pushed one variable beyond_ stakeholder’s setup, the scale

\ 2
A 1

INCREASED SCAI.E 4
Local Setup: OK

/

N Local Setup @ Scale: Reproduced!
"‘."!Hx:lll:g::()‘:; 1.\».:(1):((":--& ;1 :-..lmu“rn'»c. :i;%d;l"i ‘“ ‘h - v ' ‘ } 1 CHIDENO0ND

/

“I kept on increasing the numbexr of bundles in my local
setup... as I go beyond 50 OPA instances, the mysterious
issue start to happen consistently.”

—

o L 2
o [

A Clue that Defies Logic — 3 !—

With the issue reproduced, more structured logs became my eyes inside the

4/"’ I

BT concurrency maze. Increased logging revealed a critical but confusing event: T A
. *
Bundle Plugin
‘gk) The bundle plugin was flipping its
state from OK back to NOT_READY. -

V4 - A [Impossible
| | * Observed but \ Transition
' /) This state change directly caused the SIS SI01E et Elon

brief healthy — unhealthy transition —C>_'>®" Tim’e

we had observed. OK NOT READY

O O

N\

®

The mystery deepened: There was no code path that could explain a transition

v from OK back to NOT_READY. How could our listener observe a state change .
== t\ . that never actually happened in the code? i *E
TN % > — . L

@ g °

n./_i . > “ !\

| The.Smoking Gun: One Log Line Reveals,thé Lie ;_ j

_ ladded one log line to print the plugin statuses received by the listeners, aloné .
E with the statuses at the source of truth.

/ -
B ’ THE EVIDENCE
. "UpdatePluginStatus: THE LIE

plugin status listener map[bundle:{}] —"__>(Stale Snapshot)

status manager map[bundle:{|OK}} ...]
" THE TRUTH
"\ (Current State)

—O O

IheRevelation: \

The log proved it. The listener was receiving a stale snapshot where the bundle

oty was NOT_READY, even though the manager’s internal state was already OK.
— l 7 _ The notification was a message from the past. ﬂ .

o -

.

Reconstructing the Crime: An Event Ordering Race

* The root cause was a subtle race condition in how OPA’s manager notified listeners.

@
©)

A goroutine prepares a status snapshot
(NOT_READY).

Before it can notify, it gets pre-empted
by the OS.

Another goroutine updates the state to
OK, prepares a new snapshot, and
successfully notifies the listener.

The original, pre-empted goroutine wakes
up and delivers its stale NOT READY
snapshot, overwriting the correct state.

Digital Timeline Analysis

TIME Routine A Routine B
'S
@ (UpdatePluginStatus(‘bundIe', NOT_READY))
@ Lock = Update — Create snapshot
S1{NOT_READY)
v
@ [mé}m Preempted before calling listeners
4 * B
(14) | UpdatePluginStatus('bundle’, 0K)
J
v
(79) [Lock = Update — Create snapshot |
k. S2 (OK) .
v
@ 4-—{ Call listeners with Snapshot $2 |

@ Resumes - Call REES x
with old snapshot S1

Exhibit A: The Unprotected Gap

How the CPU scheduler hijacked the execution order.

// UpdatePluginStatus updates a named plugins status. Any registered

// listeners will be called with a copy of the new state of all

// plugins.

func (m *Manager) UpdatePluginStatus(pluginName string, status *Status) {
var toNotify map[string]StatusListener

var statuses map[string]*Status

func() {

m.mtx.Lock()

defer m.mtx.Unlock()

m.pluginStatus[pluginName] = status

toNotify = make(map[string]StatusListener, len(m.pluginStatusListeners))
maps.Copy(toNotify, m.pluginStatusListeners)

statuses = m.copyPluginStatus()

}0)

/] @ Lock released here — listeners called concurrently
for _, L := range toNotify {
1(statuses)

}
}

o

‘D
s

@

Closing the Case: The One-Line Fi/x..

Since notification system was unreliable under CPU contention, the fix was to bypassit. — <
Instead of trusting the passed in snapshot, we query the manager directly for the
current state.
2 »
| BEFORE: TRUSTING THE SNAPSHOT (Risky)] I AFTER: QUERYING THE SOURCE OF TRUTH (Fixed) ’
// manager.RegisterPluginStatusListener("...",
. // manager.RegisterPluginStatusListener("...", func(_ map[string]+plugins.Status) { »
func(status map[string]#plugins.Status) { // Get fresh status to workaround OPA issue #3009
opa.healthy.Store(allPluginsReady(status, ...)) [status := opa.manager.PluginStatus()
}) opa.healthy.Store(allPluginsReady(status, ...))
/. _ J 8 }) \ J
) ' Always get the
: latest ctate directly.
.
[— |
Why It Works: We always read the real-time state from the source of truth (the

/ manager), guaranteeing we never act on stale data delivered out of order.

S ’

. 1“’

‘;gtﬁ_;; The Detective’s Notebook : Lessons from the Case

Learning 1: Logs Beat
Debuggers to Troubleshoot
Concurrency Issues

You can't step-through race
conditions in an IDE. When an
Issue is random and
concurrency is suspected,
structured logging is more
effective.

Pro Tip: To compensate for
losing interactive stack
traces, print stack traces
directly in logs at critical

state transitions.

Learning 2 : Strategic
Logging Over Verbose

Logging

Good logging saves time, but
more is not always better. Log
key state transitions with
context, not every single
operation.

© Guiding Question: “Will
this log help me confirm or
rule out something critical?”

b

/

(

Learning 3 : Race

~4 Detectors Don't See the

Whole Picture

Go’s race detector is excellent
at finding unsynchronized
memory access (data races). It
did not detect this event
ordering race, as no memory
was accessed improperly.

Key Insight: Multi-threading
bugs are often about event

ordering and state
consistency, which require
manual reasoning.

The Detective’s Notebook : Lessons from the Ca/s’é‘ Ctd.

r

Learning 4: Question the
Assumptions Explicitly ®.

—

 ———

- ——

Learning 5: Alis a productlwty
tool, Not a Debugger (Yet) 80

—

-

False Assumption Reality

NOT_READY
means the plugin
is broken.

The real state
was OK; the
snapshot was
stale.

>

R
pa—

I

N
Al models excel at accelerating the

process: generating log parsing
commands, documenting findings,
or explaining unfamiliar code.

The actual debugging—forming
hypotheses and finding the root
cause—still requires human intuition
and expertise.

[Key Insight:

Al is excellent for generating code
and explaining concepts, but human
reasoning is still essential for
complex debugging and root cause
analysis.

j

~—

Learning 6: Every Bug is
Reproducible
(With enough persistence) @

o R
Reproducibility isn't binary; it's

about finding the right conditions. By
systematically varying parameters
(Ilke scale) and investing consistent
effort, we found a way to trigger the
bug reliably.

\. J

Takeawav:
Don’t give up on “flaky” tests

when the stakes are high.
Systematically isolate variables
and invest to find the specific
conditions that make a bug

| reproducible

Beyond Data Races : The Hidden Dangers of Information Pr/o?aéation

:&+;

' The Lesson from the Bug

Complex multi-threading issues are not
always about locks and data races. They
can be about logical races in information
propagation and timing assumptions.

E—

Final Thought

Understanding how information flows
through the system is as critical as
L protecting access to shared memory.

' /"

Case File : Primary Sources & Evidence >

For a deeper technical dive, the original iIssues and pull requests are available for review

{

r)
@ 3
1 »
OPA Issue Report: github.com/open-policy-agent/opa/issues/8009
&
or=) . _—-]
Ef?: The Exposing Feature in Skipper: pr #3562 (Preloading OPA instances in parallel) 4
‘ 3 % J
(TE) ([_ - 1
& PRé — The Workaround in Skipper: PR #3692 =y
N < J L .) ” [2
, - "; [= ~
L{ The Original Article: ‘Beyond Race Detectors’ by Pushpalanka Jayawardhana | | |- ~
el > —
— ," V—{ OPA Integration Details: Zalando Tech Blog : ‘OPA Integration in Skipper’ J \r‘\f -
: - - | 1 : ~ = 4 | g
E A ' - — N\
=, — T .
et = B T

http://github.com/open-policy-agent/opa/issues/8009
https://github.com/zalando/skipper/pull/3562
https://github.com/zalando/skipper/pull/3692/changes
https://pushpalanka.medium.com/beyond-race-detectors-first-hand-experience-debugging-a-multi-threaded-stale-data-issue-debd3a65da14
https://engineering.zalando.com/posts/2024/12/open-policy-agent-in-skipper-ingress.html

\NAZ

/ / I.-/’ t“
o . :)ll lw §§ '
—G A i d

~ “In-a multi-threaded

. | system, time is not
_linear” . .

‘ /é : — What we see is not always what is true —
7/

P o ool
’// L ./f/l —— \1\“ N ‘ s / e [\ '. * J
, ' N p : y & S - \\ N <
' / A~ =\ v 2 g \ \\ ¢ 7, ///// ’/‘, /ﬁf} TR \
. —— /7 ' : : \.
//// r/// 7\\\ | \ - g4 ' & \,, | ~

Thank you!

>>>

v) \

/ ¥ 4
¢

//// PULL /7 N S e N AW L PSS

